
DATASHEET

8 PIN SOP DUAL CHANNEL HIGH SPEED 10MBit/s LOGIC GATE PHOTOCOUPLER EL063X Series

Features

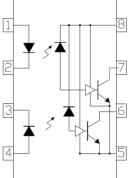
- Compliance Halogen Free .
- (Br <900 ppm ,Cl <900 ppm , Br+Cl < 1500 ppm)
- High speed 10Mbit/s
- 10kV/µs min. common mode transient immunity (EL0631)
- Guaranteed performance from -40 to 85°C
- Wide operating temperature range of -40°C to 100°C
- · Logic gate output
- High isolation voltage between input and output (Viso=3750 V rms)
- Compliance with EU REACH
- · Pb free and RoHS compliant
- UL and cUL approved(No. E214129)
- VDE approved (No.40028116)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved

Description

The EL0630 and EL0631 are dual channel devices each consists of an infrared emitting diode optically coupled to a high speed integrated photo detector logic gate with a strobable output. The devices are packaged in an 8-pin small outline package which

conforms to the standard SO8 footprint.

Applications


- · Ground loop elimination
- LSTTL to TTL, LSTTL or 5 volt CMOS
- Line receiver, data transmission
- Data multiplexing
- · Switching power supplies
- Pulse transformer replacement
- Computer peripheral interface

Truth Table (Positive Logic)

Input	Output
Н	L
L	Н

<u>Schematic</u>

EVERLIGH

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. Cathode 4. Anode
- 4. Anou 5. Gnd
- 6. Vout 2
- 7. Vout 1
- 8. V_{CC}

Absolute Maximum Ratings (Ta=25°C)

	Parameter	Symbol	Rating	Unit
	DC/ Average Forward current	١ _F	20	mA
Input	Reverse voltage	V _R	5	V
	Power dissipation	P _D	45	mW
	Power dissipation	P _C	60	mW
Outrout	Output current	Ι _Ο	50	mA
Output	Output voltage	Vo	7.0	V
	Supply voltage (max 1 minute)	V _{CC}	7.0	V
Output P	ower Dissipation	Po	80	mW
Isolation	voltage ^{*1}	V _{ISO}	3750	V rms
Operatin	g temperature	T _{OPR}	-40 ~ +100	°C
Storage	Storage temperature		-55 ~ +125	°C
Soldering	g temperature *2	T _{SOL}	260	°C

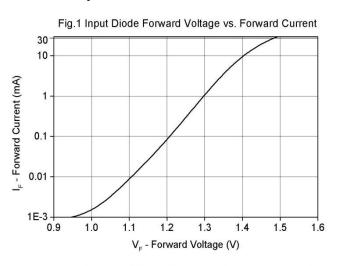
Notes:

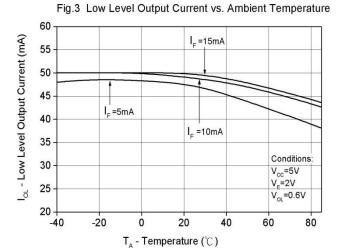
*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2, 3, 4 are shorted together, and pins 5, 6, 7, 8 are shorted together.

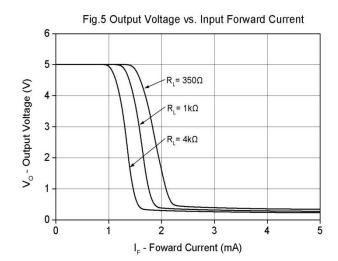
*2 For 10 seconds

Electrical Characteristics (Ta=-40 to 85°C unless specified otherwise)

Input						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	V _F	-	1.4	1.8	V	I _F =10mA
Reverse voltage	V _R	5.0	-	-	V	Ι _R =10μΑ
Temperature coefficient of forward voltage	$\Delta V_F / \Delta T_A$	-	-1.8	-	mV/°C	I _F =10mA
Input capacitance	C _{IN}	-	60	-	pF	$V_F = 0$, f=1MHz
Output						
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
High level supply current	I _{CCH}	-	13	18	mA	I _F =0mA, V _{CC} =5.5V
Low level supply current	I _{CCL}	-	15	21	mA	$I_{F} = 10 \text{mA}, V_{CC} = 5.5 \text{V}$

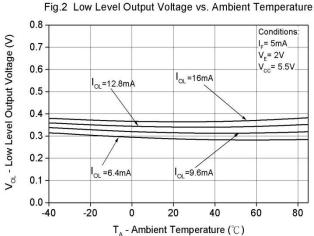
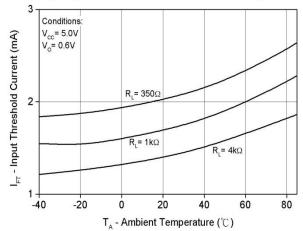
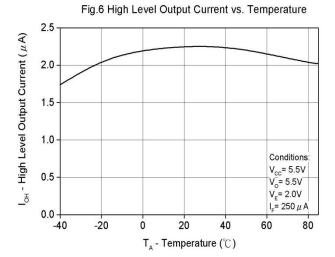

Transfer Characteristics (Ta=-40 to 85°C unless specified otherwise)

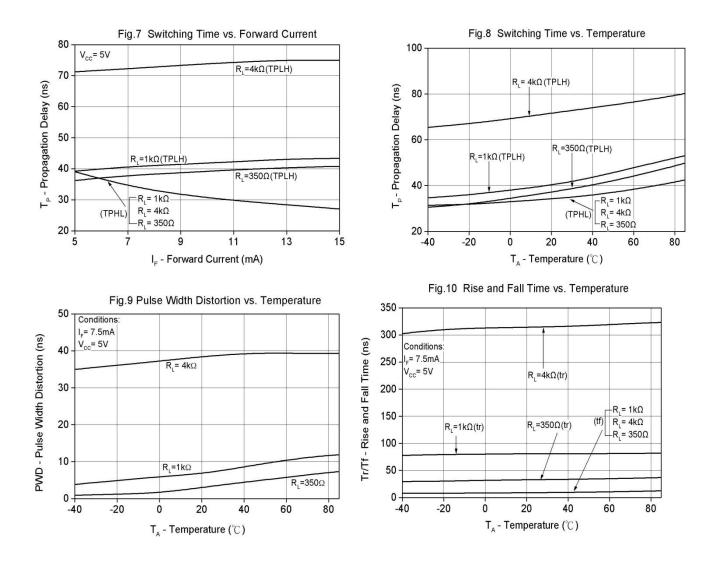

Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
HIGH Level Output Current	I _{OH}	-	-	100	μA	V _{CC} =5.5V, V _O =5.5V, Ι _F =250μΑ,
LOW Level Output Current	V _{OL}	-	-	0.6	V	V _{CC} =5.5V, I _F =5mA, I _{CL} =13mA
Input Threshold Current	I _{FT}	-	-	5	mA	V _{CC} =5.5V, V _O =0.6V, I _{OL} =13mA

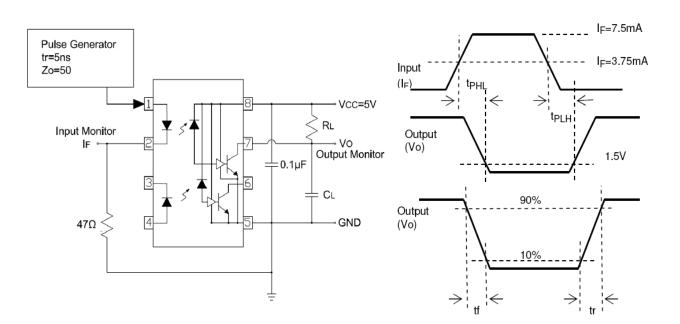

Switching Characteristics (T_a=-40 to 85°C, V_{CC}=5V, I_F=7.5mA unless specified otherwise)

Parar	neter	Symbol	Min	Тур.	Max.	Unit	Condition
Propagatio time to outp level* ⁴ (Fig.11)		t _{PHL}	-	-	100	ns	C _L =15pF, R _L =350Ω, T _A =25°C
Propagatio time to outp level ^{*5} (Fig.11)		t _{PLH}	-	-	100	ns	C _L =15pF, R _L =350Ω, T _A =25°C
Pulse width		t _{PHL} – t _{PLH}	-	-	35	ns	C_L =15pF, R_L =350 Ω
Output rise (Fig.11)	time* ⁶	t _r	-	40	-	ns	C_L =15pF, R_L =350 Ω
Output fall (Fig.11)	time* ⁷	t _f	-	10	-	ns	$C_L = 15 pF, R_L = 350 \Omega$
Common Mode Transient Immunity	EL0630	- ICM _H I	5000	-	-	V/µs	$\label{eq:linear_state} \begin{array}{c} I_{\text{F}} = 0mA \; , V_{\text{OH}(\text{MIN})} = 2.0V, \\ R_{\text{L}} = 350\Omega \; , \; T_{\text{A}} = 25^{\circ}\text{C} \\ \hline IV_{\text{CM}}I = 1KV(\text{Fig.12} \;) \\ \hline I_{\text{F}} = 0mA \; , V_{\text{OH}(\text{MIN})} = 2.0V, \end{array}$
at Logic High* ⁸	at Logic EL0631 High* ⁸		10000				R _L =350Ω, T _A =25°C IV _{CM} I=1KV(Fig.12)
Common Mode Transient	EL0630		5000				$ \begin{array}{c} {\sf I}_{\sf F} = \! 7.5 \text{mA}, {\sf V}_{{\sf OL}({\sf MAX})} \!=\! 0.8 \text{V}, \\ {\sf R}_{\sf L} \!=\! 350 \Omega, {\sf T}_{\sf A} \!=\! 25^\circ \text{C} \\ {\sf I} {\sf V}_{\sf CM} \text{I} =\! 1 \text{KV}(\text{Fig.12}) \end{array} $
Immunity at Logic Low* ⁹	EL0631	- ICM _L I	10000	-	-	V/µs	$ I_{F} = 7.5 \text{mA}, V_{OL(MAX)} = 0.8 \text{V}, \\ R_{L} = 350 \Omega, T_{A} = 25^{\circ}\text{C} \\ I V_{CM}\text{I} = 1 \text{KV}(\text{Fig.12}) $

Typical Electro-Optical Characteristics Curves


Fig.4 Input Threshold Current vs. Ambient Temperature



EVERLIGHT

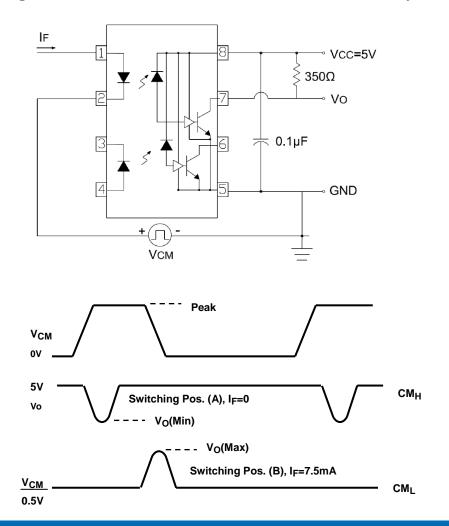

EVERLIGHT

Fig. 11 Test circuit and waveforms for t_{PHL}, t_{PLH}, t_r, and t_f

EVERLIGHT

Copyright © 2010, Everlight All Rights Reserved. Release Date :April 22, 2015. Issue No:DPC-0000175 Rev.6

7

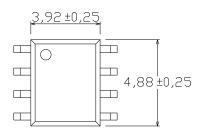
Notes

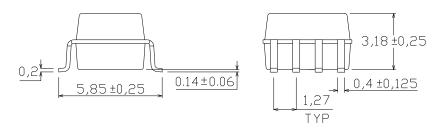
- *3 The V_{CC} supply must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package V_{CC} and GND pins
- *4. t_{PLH} Propagation delay is measured from the 3.75mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- *5. t_{PHL} Propagation delay is measured from the 3.75mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- *6. t_r Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
- *7. t_f Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
- *8 CM_H The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the HIGH state (i.e., V_{OUT} > 2.0V).
- *9 CM_L The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the LOW output state (i.e., V_{OUT} < 0.8V).

Order Information

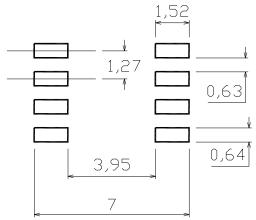
Part Number

EL063X(Z)-V

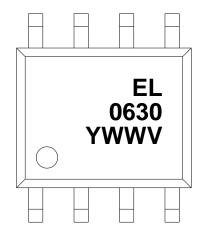

Note


- X = Part no. (X = 0 or 1)
- Z = Tape and reel option (TA, TB or none).

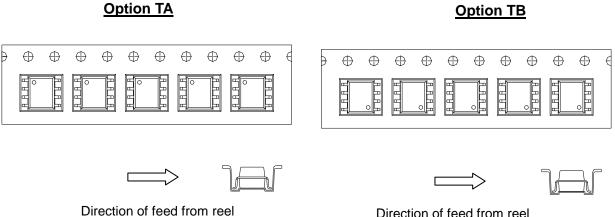
V = VDE (optional)

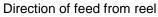

Option	Description	Packing quantity
None	Standard	100 units per tube
-V	Standard + VDE	100 units per tube
(TA)	TA tape & reel option	2000 units per reel
(TB)	TB tape & reel option	2000 units per reel
(TA)-V	TA tape & reel option + VDE	2000 units per reel
(TB)-V	TB tape & reel option + VDE	2000 units per reel

Package Dimension (Dimensions in mm)

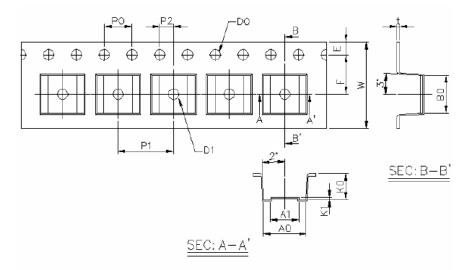

Recommended pad layout for surface mount leadform

EVERLIGHT


Device Marking

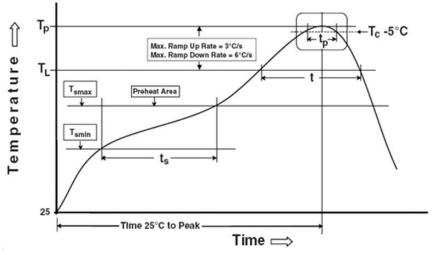


Notes


0630	denotes Device Number
Y	denotes 1 digit Year code
WW	denotes 2 digit Week code
V	denotes VDE (optional)

Tape & Reel Packing Specifications

Tape dimensions



Dimension No.	A0	A1	В0	D0	D1	Е	F
Dimension(mm)	6.2±0.1	4.1±0.1	5.28±0.1	1.5±0.1	1.5±0.3	1.75±0.1	5.5±0.1
Dimension No.	Ро	P1	P2	t	W	K0	K1
				-		-	

Precautions for Use

- 1. Soldering Condition
 - 1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T _{smin})	150 °C
Temperature max (T _{smax})	200°C
Time (T_{smin} to T_{smax}) (t_s)	60-120 seconds
Average ramp-up rate $(T_{smax} to T_p)$	3 °C/second max
Other	
Liquidus Temperature (TL)	217 °C
Time above Liquidus Temperature (t $_{L}$)	60-100 sec
Peak Temperature (T _P)	260°C
Time within 5 °C of Actual Peak Temperature: T_P - 5°C	30 s
Ramp- Down Rate from Peak Temperature	6°C /second max.
Time 25°C to peak temperature	8 minutes max.
Reflow times	3 times

Reference: IPC/JEDEC J-STD-020D

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT Corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.